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ABSTRACT: Three proteins, with apparent molecular weights
of 16, 30, and 42 kilodaltons, made by glial cells of the
goldfish optic nerve undergo enhanced synthesis during
regeneration of the retinotectal axons. If, as has been
postulated, these enhanced glial proteins (or EGPs) assist
in axonal regeneration, they may interact with the
retinotectal neurons. Two possible modes of interaction,
1) endocytosis/retrograde transport and 2) binding to
optic nerve membranes, were examined using gel
electrophoresis of radiolabelled glial proteins. The
results suggest 1) that two glial proteins, which may be
EGP-16 and EGP-42, are retrogradely transported to the
retina during axonal regeneration and 2) that a third
glial protein, perhaps EGP-30, binds in a specific and
saturable manner to the membranous fraction of the optic
nerve.
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DEATON, et al. 1

INTRODUCTION: Teleost fishes, such as the common goldfish
(C. auratus), and anurans possess the ability to
regenerate central nervous system (CNS) axons following
trauma to the nerve. Unidentified factors made by glial
cells have been shown to potentiate regeneration of axons
following axotomy (1-4). The effects tend to be greater
if the factors are gleaned from glial cells of nerves that
are themselves in the process of regenerating (5-8)
Recent work suggests that these unknown factors may enable
injured mammalian CNS neurons, which normally do not
regenerate, to extend neurites well beyond the site of
trauma (9, 10). Three proteins made by glial cells of the
goldfish optic nerve undergo at least five-fold increases
in synthesis following injury to the retinotectal axons
(11). Thus these three proteins are likely candidates for
the unknown factor(s) which potentiates regeneration.
These proteins have been tentatively named enhanced glial
proteins, or EGPs, and each is identified by its apparent
molecular weight in kilodaltons (KD), as shown in Figure 1
(12-16). If one or more of the EGPs is the unknown
factor(s), it (they) might well interact with
regenerating axons. Two possibilities for such
interaction were tested in this study: retrograde
transport of EGPs to the retina and binding of EGPs to
the optic nerve.

METHODS: FIRST PARADIGM (retrograde transport) - Each
fish (n=3) received a unilateral intraorbital left optic
nerve crush. Ten days later, 500 uCi of [35S]methionine in
a total volume of 5 uL was introduced intracranially to
the right optic tract1 . The cranium was then resealed,
and 16 hours were allowed for [35S]met incorporation into
glial proteins and subsequent retrograde transport to the
retina. The left retina was then excised and prepared for
sodium dodecyl sulfate polyacrylamide gel electrophoresis
(SDS-PAGE) (19) and gel fluorography (20).

-The goldfish optic axons decussate completely at the
optic chiasm. Between the eyc and the chiasm the fibers
are referred to as the optic nerve; between the chiasm
and the optic tectum they are referred to as the optic
tract. Glial cells (oligodendrocytes, astrocytes, and
microglia) reside around and in between the axons (17,
18).
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DEATON, et al. 3

Figure 1. Enhanced glial proteins of the goldfish optic
nerve. Optic nerves were incubated for two hours in 100
uL of Ringer's solution that also contained 60 uCi
[35S]met. Radiolabelled proteins that had been released
into the medium were then subjected to 2-D PAGE and
fluorography. A, normal control. b, 10 days after
intraorbital optic nerve crush. The nerve crush caused
three glial proteins to undergo enhanced synthesis, hence
the term enhanced glial proteins, or EGPs. Similar
results were obtained when enucleation was substituted for
optic nerve crush.

RESULTS AND CONCLUSIONS: FIRST PARADIGM - The retinae
from the fish used in the first paradigm (retrograde
transport, Figure 2A) contained two radiolabelled proteins
which migrated electrophoretically to positions
corresponding to those of EGP-16 and EGP-42 (Figure 2B).
The most likely source of these two proteins is the glia
surrounding the optic nerve. This assertion is based on
three factors. First, the only structures in the optic
tract that are capable of synthesizing significant amounts
of protein are the glial cells (17). Second, the minimum
amount of time required for radiolabelled proteins present
in the optic tract to be retrogradely transported to the
retina is approximately 16 hours (21, 22). Thus, even if
the radiolabel had made its way into neuronal cells
surrounding the injection site, the proteins made by those
cells would not have had time to be secreted into the
interstices, cross into the optic axons, and bc
retrogradely transported to the retina. Third, it is
unlikely that the radiolabelled proteins found in the
retina at the end of 16 hours were made by retinal cells
from free [35S]met which was carried to the retina by the
bloodstream. The reasoning for this third assertion is as
follows: our calculations indicate that only 2 x 10-2%
of the radiolabel injected into the goldfish cranium makes
its way into the circulatory system over the course of 16
hours. If one assumes that all the radiolabel in the
bloodstream is unbound and that one retina occupies as
much as 1% of the total blood volume (a generous
assumption), then only 2 x 10-4% of the total injected
radiolabel would be available for protein synthesis in the
retina. Thus of the 500 uCi introduced into the cranium,
only 2000 cpm would be available to the retina. We
recovered precipitable radioactivity from the retina which
was on the order of 15,000 cpm (12). We postulate,
therefore, that the 16 and 42 KD proteins were made by
the glia, and appeared in the retina as a result of
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endocytosis and retrograde transport.

Figure 2. Two proteins,
which may be EGP-16 and
EGP-42, appear in the
retina 10 days after optic I
tract crush. A, each fish
(n=3) received an
intraorbital optic nerve
crush. Ten days later
[35S]met was applied
intracranially directly to
the affected optic tract.
Sixteen hours later, the

42 corresponding retina was
excised and subjected to
SDS-PAGE and fluorography.
Two proteins with apparent
molecular weights of 16 and
42 KD appeared in the
retinae of these animals.
B, SDS-PAGE preparation of
the conditioned medium
described in Figure lB is
shown here for comparison.

1-- The most likely source of
the labelled proteins shown
in A is the glial cells of
the optic nerve. Thus,
these proteins probably

appear in the retina as a
result of endocytosis and
retrograde transport.

METHODS: SECOND PARADIGM (specific binding of EGPs to
axons) - Conditioned medium containing [35S]met-labelled
glial proteins (to include the EGPs) was prepared as
previously described by incubating 10-day post-crush
goldfish optic nerves for 2 hours in 100 uL of goldfish
Ringer's solution that also contained 60 uCi [35S]met (12-
16). Concomitantly, optic nerves (back of the eye to optic
chiasm) from three sets of fish (n=3 for each set) were
excised and homogenized into Ringer's solution (23). Set
1 was prepared from normal optic nerves. Set 2 was made
from regenerating optic nerves, 10 days after nerve crush.
Set 3 was prepared from degenerating optic nerves, 6 weeks

~ ~ -
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after enucleation. The amount of each homogenate was
adjusted such that each contained approximately 210 ug
total protein.

An aliquot of the conditioned medium containing 85 ug
total protein and an aliquot of 4500 ug of bovine serum
albumin (BSA, used to inhibit nonspecific binding) were
added to each of the nine homogenates. Each preparation
was then brought to equal weight, incubated at 200 C for 30
minutes, and then centrifuged at 45,000 x g for two hours;
each resulting cytosolic supernatant and membranous pellet
was prepared for SDS-PAGE and fluorography.

As a control, one group of these preparations (n=l from
sets 1, 2, and 3) was made in which no BSA was added.
Thus nonspecific binding of radiolabelled glial proteins
to the axonal membranes was not inhibited. In this group,
virtually every radiolabelled protein made by the glial
cells bound to and co-sedimented with the membranous
fraction of the optic nerve homogenates (data not shown).

In another control, the optic nerve homogenates were
incubated for 2 hours with 60 uCi each of [35S]met. The
homogenates were shown by SDS-PAGE/fluorography to be
incapable of incorporating [35S)met into protein. All
lanes on the resulting fluorograms were blank.

RESULTS AND CONCLUSIONS: SECOND PARADIGM - A 30 KD
radiolabelled glial protein from the conditioned medium
bound to and co-sedimented with the membranous fractions
from normal, regenerating, and degenerating optic nerves
(Figure 3, lanes D-F) when BSA was added in a 50-fold
excess to inhibit nonspecific binding. A detectable
amount of this 30 KD protein also remained in the
cytosolic fraction (Figure 3, lanes A-C). Thus, the
protein appears to bind specifically and saturably to the
membranous component of the optic nerve. It is
interesting to note that, at least qualitatively, not as
much of the 30 KD protein binds to the degenerating optic
nerve membranes as binds to either those from the normal
or regenerating optic nerves (compare lane F to D and E,
Figure 3). Thus if a receptor for the 30 KD protein
exists, it appears to decrease in quantity as the optic
nerve fibers degenerate. This suggests that if a receptor
is present, it is located on the axonal membrane.

,5
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Figure 3. A 30 KD glial
protein co-sediments
w- th the membranous
fraction ot the optic

- £ k nerve. Conditioned
" r " medium containing

radiolabelled glial
proteins (to include the

-gEGPs) was prepared as
for Figures lB and 2B.
An aliquot of this

BSA -> medium was added to
whole homogenates of
optic nerve. Also, an
aliquot of crude BSA was
added to each mixture.

30_ Each such mixture was
S. incubated for 30 minutes

and then centrifuged at
45,000 x g for two
hours. The resulting
pellets and supernatants
were separated and
prepared f or SDS-PAGE
and fluorography. A 30
KD glial protein from
the conditioned medium
bound to and co-
sedimented with the
membranous fraction of

the optic neives, lanes b--F. A reaqily detectable amount
also remained in the suternatant, lanes A-C. Normal optic
nerves were used to prepare the homogenate used for lanes
A and D. Regenerating optic nerves, 10 days after
intraorbital nerve crush, were used for lanes B and E.
Degenerating optic nerves, six weeks after enucleation,
were used for lanes C and F.

DISCUSSION: Sevreral controls remain to be performed
before it can be said whether any of the three proteins
described here are the same as EGP-16, EGP-30, or EGP-42.
The results of this preliminary study, however, make the
hypothesis that EGPs interact with regenerating neurons
less speculative.

Using these results, one can propose a mechanism whereby
glial cells potentiate the process of regeneration of
axons. For instance, it is likely that EGP-30 is an
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apolipoprotein (24-28). Thus, when nerve trauma occurs, a
population of the glia begins to synthesize this
apolipoprotein, perhaps as a way to supply the
regenerating axons with the lipids they require to
accomplish neurite/axon extension. This scenario would
explain why we see binding of the 30 KD protein to the
axonal membranes without subsequent retrograde transport;
the 30 KD protein is probably being used at the axon tips.

In the cases of the 16 and 42 KD proteins, it is possible
(but still highly speculative) that one or both is a
growth factor made by the glia following nerve trauma. It
(they) is then endocytosed by the injured axons and
retrogradely transported to the retina where it
potentiates/triggers reactions in the retinal ganglion
cell bodies that lead to successful axonal regeneration.
Many of the known growth factors (fibroblast growth
factor, to name but one) have molecular weights in the
range of that of EGP-16.

Given that spinal and other CNS injuries occur in the
military environment in times of both peace and war, this
area of research warrants further investigation by the
military medical research community. Discovering the
difference between teleosts/anurans and mammals that
enables the former to successfully regenerate CNS axons
may someday result in regimens that allow us to
effectively treat CNS axonal injuries.

..
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